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1. Introduction

The CNDO/2 method proposed in 1965 and 1966 by Pople, Santry and Segal
[1-5] marked the beginning of the development and the application in molecular
physics and theoretical chemistry of semi-empirical methods taking into account
all valence electrons. This method is strongly advised when we are interested in
the variation of a physico-chemical property along a series of molecules; it also
allows quantitative prediction, for a number of physico-chemical properties,
provided that the parameters used are correctly chosen.

The parametrization of Pople et al. is only extended over the atoms of the three
first periods of Mendeleiev’s periodic table. Various authors [6-22] tried to
improve and extend Pople’s parametrization. The following significant point
arises from our bibliographical study: there is no parametrization of the kind
CNDO-INDO extended to the whole periodic table. The Pople-Santry-Segal
CNDO/2 method and the modified CNDO/2 version worked out recently by
Clack [12-16] for transition-metal complexes have been extended to the full
periodic table. Our research is based on the following idea: if we consider a
molecule MX and if X goes through the periodic table when M remains fixed
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the physico-chemical properties of MX tend to vary in close relation with the
variation of the X atomic properties.

2. Formalism and Parametrization of the Method

1. Notion of Fictitious Atoms

In many electrons problems, the Hamiltonian can usually be written in the form:
2

n n e
H(1,2,...,n)= Y hp)+ ¥ — (1a)
uw=1 w>v Fuy
where n is the number of electrons in the system and #(w) is the hamiltonian
operator for the wth electron moving in the field of the nuclei alone, it is given
by:
n N
Alw) =—A)-Y V. 1b
() o () El (1) (1b)
N is the number of atoms and V() is the potential due to the nucleus S.

The Hartree-Fock—Roothaan (HFR) equations [2, 3] are:

F'Ck=€k‘S‘Ck (23)
with
Fry=hy+Y Y pu((DFD,|D,DF) -1 - (D} DD, D)) (2b)

The neglect of differential overlap (NDO) approximation introduced by R. G.
Parr [24] can be expressed by:

OF ()P (1) dr,, = 8, DF () D5 () dr, 3)
After using NDO approximation, Egs. (2) become:

F - -Ci=er Cy (4a)

Fp=hy—=% P Yut L pu v (4b)

Fi=hu=2 Dy * s , (4c)
where

Yrs =(DF (1) O (w)|DFE) - Dy (v)). (4d)

Egs. (4) are not invariant with respect to an arbitrary rotation of the local set
of coordinate axes, this is due to the NDO approximation. For this reason, Pople
[1, 2] introduced in the CNDQO/2 method the following approximations:

for every AO (I), of R atom, YHR)(R) = YRR (Sa)
for every AO @, of R atom
and every AO ®, of § atom, y,&)ss) = Yrs- (5b)
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The CNDO/2 method proposed by Pople et al. is only extended over the atoms
of the three first periods.

The latter approximations are no longer justified for a transitional element T
which is characterised by the presence of subshells of different quantum numbers
(n—1)d and nsnpnd. For this reason, we have distinguished level (n —1)d
electrons from level n electrons. If T, 1, and T, stand for levels (n —1)d and
n respectively, we shall have three Coulomb repulsion integrals in this case:

Y Tin-1yTn—1) > Y Ty T and YT, T,-

On the other hand, the potential created by a transitional element:

2
4

rr(w)

Vru)=Zr (6a)

where Z7 is the number of valence electrons of a T atom (transitional element),
can be decomposed in two parts V., and Vr, because:

Zy=Zr,_ ,+Zr, (6b)
then,
VT(“‘) = VT(,._D(#’)+ VTn (#’) (6C)

If &, represents an AO of an atom R belonging to the “s —p block” one obtains
from Eq. (6¢):

(@F|Vr|®,) = (@F|Vr, | @) +(D|Vr,|D,). (7a)

The approximation procedure of Pople and Segal [2] to calculate this type of
integrals can be extended for the transitional elements:

(‘D;kl VT(,I;UI(DQ = ZT(,l,l) ' YRT( -1y (7b)
and
(q):kIVT,.lq)r> =Zr, * YRT,- (7c)

In our model, integrals of the type (&} Vs|®,) can have six different forms. The
reason is that § can be an element of the “‘s —p block” or a transitional element;
whereas ®, can be either an AO of an element of the ‘s —p block” or an AO
of levels Tn or T(n—l)-

First of all we have reformulated [25] the CNDO/2 equations with the above
formalism. This formalism which consists of introducing transitional elements
affects the forms of the CNDQ/2 equations, therefore an important modification
of the computational program is needed. Indeed, using our formalism we have
obtained three possible forms for F,, and ten for F,;. Our equations differ from
those of Pople in that they contain additional terms of interaction between
(n —1)d electrons and (ns np nd) electrons.

As an example to illustrate this point, if we consider an AO &, of an atom R
belonging to ‘s —p block”, the corresponding F,, is:

F,=F, +F> (8a)
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Fl =x,+((Qr—Zg)—3(pr—1)) - yrr + SZR (Qs—Zs) * Yrs (8b)
=
F? =]Z, (Qt, —Z1,) " YrT, +TZ (Qti—ry=Z1_s) " YRT(nes) - (8¢c)
n (n—1)

F'}, is the well known term in the method of Pople, F7, is due to the introduction
of transitional elements. On the other hand, if we consider two AOs @, and @,
belonging to T,, and T, respectively, the corresponding F,, would be:

Frs = —% *Dsr® YT, To-1 (8d)

YT.T._, €Xpresses the interaction between (n —1)d electrons and (ns np nd)
electrons of the same transitional element T.

Then, in order to avoid this important modification of the program, a careful
examination of the reformulated CNDO/2 equations shows that we can maintain,
even for the transitional elements, the CNDO/2 equations of Pople provided
that we consider a transitional atom T as a superposition of two fictitious atoms
Tw-1y and T,, with the same space coordinates. T,_1) and T, will provide the
basis with (n —1)d AOs and (ns np nd) AOs respectively.

One can point out that the energy of repulsion between cores is simply:

ZrZT 2 (ZRZT( _1) ZRZT) 2
et = 2 -+ Zl.¢ 9a
drr der | dnr 2
The total energy of repulsion between cores will be expressed by:
ZrZ,
Ey= RES 2 (9b)
R#S dRS

drs#0

In the previous equation, dgrs # 0 expresses the fact that we must not take into
account the energy of repulsion between two cores with the same coordinates,
for example 7T,,_; and T,.

This formalism can be extended to the Lanthanides, we shall have three fictitious
atoms, T(,-2y, T(.—1y and T, for (n —2)f, (n —1)d and ns np AOs respectively.
2.2. Choice of the Base

We have used a basis formed by a set of real Slater type atomic orbitals (STO)
defined [26-29] by the usual form:

(I)n*,l,m(rs o, ¢) =Rn*(r) ) ®l,m(0) : (Dm(¢) (10)

These AOs are expressed, for the fourth and sixth periods [30], with the aid of
fractional effective quantum numbers n*:

n* is equal to 3.7 and 4.2 for the 4th and 6th periods respectively. If we use
ao, the Bohr radius, as the unit of length, the radial function will have the
following form:

R.(ry=N, - r" . e (11a)
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where n is the number of the period, N,, the normalization constant and ¢ the
orbital exponent.

For the fourth period: R,(r)=N,-r*7 e, (11b)

Unfortunately the presence of fractional quantum numbers introduces an addi-
tional difficulty: one must use gamma function I'(z ), which is a numerical function,
to compute overlap and Coulomb integrals; this difficulty is not insurmountable
but we have preferred to extend the procedure of interpolation proposed by J.
M. Sichel and M. A. Whitehead [6] for the radial functions of the fourth and
sixth periods. According to this interpolation procedure, R4(r) and Re(r) are
given by:

- _ zZ*

Ryr)=N,-(0.3r*+0.7%) - exp (—ﬁ . r) (12a)
_ — Z*
Re(r)=Nq - (0.8 +0.2r%) - exp (—4—2— . r) (12b)

where Z* is the effective nuclear charge.

N, and N normalization constants have been calculated and are given by:

_ ( 128.0¢° )”2

Ne= 610,008 +1.47¢ +6.86) (13a)
- 0.01269¢"! >1/2
6_(0.64§2+1.44§+0.9 (13b)

The radial functions R4(r), R4(r), Re(r) and Re(r) have been plotted [25], these
plots show that each interpolated radial function is practically equivalent to its
own corresponding non-interpolated one.

Since the radial functions are interpolated for the fourth and sixth periods’ atoms,
the AOs @4, and P, of the fourth and sixth periods’ atoms will also be interpo-
lated:

- 1\74,» Nélr
Dy, =03 —D5,+0.7—D,,
X N s 0T T, (14a)
¥ NGr N6r
P r = U P 02— r
s = 0.8 N, &y, +0.2 N, ds (14b)

where ®3,, @,, and ®s, stand for AOs with integer quantum numbers; N3,, Ny,
and Ns, stand for normalization constants corresponding to these AOs respec-
tively.

In the general case we have:

_ 2
q)r = kz Agr * (Dr (140)
=1
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thus, overlap integrals
Srs = <a);k/(_l-)s> (153)

and Coulomb integrals:
2

s = <<T>3 / ri / 5)§> (15b)

using AOs pertaining to atoms of the fourth or sixth periods can be expressed as:

2 2
Srs = kz_:l 121 Ay * Qs * <q)7ckr/¢ls> (16)
2 2 2 2
YRS — Z Z Z Z Qir * Ay * Qps * Ags <(Dqu)lr/¢)psq)qs>- (17)

k=1 1=1 p=1 q=1

The previous formulas are general. Indeed, if an AO is non-interpolated, one
of the coeflicients a,, will be equal to zero, the other one will be equal to one.

We have established [31] a general program to compute these integrals.

3.1. Determination of the Parameters 3 % and Xrr

The parametrization of Pople is only extended over the atoms of the three first
periods. For atoms pertaining to the other periods, we have to determine the
atomic parameters 8% and Mulliken’s electronegativities x,,.

For every atom R (ns —np —nd) of the “s —p block” we need the atomic para-
meter B% and (xss, xpp) if We use a basis ns ~np and (xs, Xpps Xaa) if nd AOs
are taken into account.

For a transitional atom T((n —1)d —ns —np —nd) we have used two atomic
parameters 8 (}(,H) and BY, corresponding to ((n —1)d) electrons and (ns ~np —
nd) electrons respectively. Otherwise, in addition of y, xp» and ygs of the
(ns —np —nd) AOs, we have evaluated yq; Mulliken’s electronegativity corres-
ponding to the subshell (n —1)d.

A careful examination of the numerical values of the parameters proposed by
Pople for the three first periods led us to make the following remarks: the B
parameters vary with a parallel relation to Pauling’s electronegativity (y) and
decrease when the principal quantum number rnr increase.

It is reasonable to suppose that the above-mentioned variation can be extended
to the full periodic table.

The variable 1—+XaR— enable us to express, simply, the dependence of B% on
Ar

xr and ng. We have expressed 8% by means of a polynomial formula:

N k

Br=-1 Av: (X—R) (18)

k= 1+a-ng
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We have used the yg electronegativities proposed by A. L. Allred and E. G.
Rochow [32]. The numerical coefficients of Eq. (18) have been determined by
parabolic fitting to the 8 % values proposed by Pople et al. for the elements of
the second and third periods; also, the best agreement was found when & degree
is equal to two. The polynomial obtained is:

B =—(3.323+6.187X +1.561X3) (19)

where X stands for xz/(1+0.15n%).

The values obtained, by means of Eq. (19), for ﬂ(%s , of transition elements of
the fourth period are systematically underestimated. However,the ratio between
BY., used by Clack et al. [12] and B7,, evaluated by means of Eq. (19) remains
approximately constant throughout of the fourth period transition elements. The
average of this ratio is equal to 1.380; it is therefore possible to reproduce, with
a sufficient precision, the 87, proposed by Clack using the formula:

B%0 s =—1380(3.323+6.187Y +1.561Y?) 00

where Y stands for ygz/(1+0.15(n —1)). We have supposed that the previous
formula remains available for BOT("_M of the other transition periods.

The B4, can be obtained by:

4
BT, = m(ﬁ) - B%, 21a)
where:
4s\ BT, (Clack)
P T(3d> ~ g7, (Clack)’ (21b)

If we suppose, and that seems reasonable, that pr remains approximately constant
throughout the same column of the periodic table’s “d-block”, we have then
obtained a general procedure to evaluate the B(%(H)d and B%ﬂs of all transition
elements.

A similar, but more involved procedure has been established for the calculation
of x,, parameters of any element.

For the atoms of the periodic table’s ‘s —p block”, the y,, may be expressed by
means of very simple formulas:

Xss = —4.7307+7.5093yr +0.3423x % (22a)
Xop = 0.39649y, (22b)
Xaa = 0.03622), (22¢)

where the values 0.39649 and 0.03622 are the average of the ratios obtained
from the values used by Pople et al. for the second and third period elements.
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Similar formulas are used for x, of transitional’s elements from Clack’s para-
meters:

for T,

Xss =0.43101(—4.7307 +7.5093x 1 +0.3423x 7) (23a)
and

Xop = 0.23681 x4, (23b)

Table 1. Bond lengths (R, in A), force constants (k in dynes/cm), atomisation energies (E4 in eV)
and ionisation potentials of homo-nuclear diatomic molecules. Results obtained by means of
CNDO/2-U

I

H,
R, 075 0.74
k 1040 5.70
E4 5.37 448
I 20.82 1543 111 v \" VI VII

Li, B, C, N, 0, F,
R, 218 267 123 159 114 131 114 110 113 121 112 142
K 0.82 025 24.18 3.50 36.46 12.20 49.88 23.00 50.12 11.80 46.86 4.50
E. 1471 1.08 2726 299 27.13 6.50 2535 975 1723 5.11 1433 1.56

I 14.09 496 16.67 17.53 12.00 18.51 15.58 14.86 12.08 19.19 15.70
Naz Alz Siz Pz Sz C12

Ry 2.83 3.08 1.88 1.87 225 190 189 190 189 189 1.99

K 0.47 6.06 9.65 13.19 15.14 13.97 3.80

Es, 1265 075 16.16 16.64 3.25 16.37 5.03 11.57 3.60 9.86 247

I 11.95 11.43 11.05 12.77 1023  9.60 23.43 11.50
K, Ga, Ge, As, Se, Br,

Ry 441 392 194 2.03 2.14 221 215 225 228

K 0.15 4.72 7.78 9.81 11.44 1072 2.40

E, 1223 0.51 17,69 152 1826 2,82 1826 394 1185 282 801 197

I 13.03 12.84 12.07 8.76 10.97 10.71
Rb, Tn, Sn, Sb, Tes L

Ry 4.85 2.16 2.34 2.44 253 2359 257 267

K 0.11 3.89 5.17 6.73 6.22 6.07 170

Es 1144 047 1310 1336 199 12,66 299 7.64 230 553 1.54

I 9.58 9.98 10.17 9.50 741 850 9.12 9.65
CSz T12 Pb2 B12 P02 At2

Ry 6.00 2.56 2.71 2.87 2.89 2.97

K 0.07 2.58 3.36 4.24 3.81 5.79

E, 1087 045 1212 1136 1.00 10.87 170 5.97 3.79

I 8.65 9.20 8.63 8.08 7.91

On the right experimental data are given by G. Herzberg (Ref. [33]); Ionisation potentials of §, and
Te, are measured by Photoelectron spectroscopy (Ref. [34]).
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for Tn_1
Xaa = 1.27044 x4, . (23¢)

3. Results and Discussion

Our CNDO/2-U method has been applied to a set of molecules pertaining to
verious class. This set includes 52 diatomic molecules, 42 small polyatomic
moecules and 10 transition metal complexes. In all we have studied 104 molecular
species. In each case the energy has been fully minimised with respect to
molecular geometry.

Table 2. Results for some heteronuclear diatomic molecules by means of CNDO/2-U

A
Dissociation Ionisation Dipole
Bond lengths (R)  energies (eV) potentials (eV) moments (D)

AB CNDO  Exp. CNDO  Exp. CNDO  Exp. CNDO Exp.
LiH 1.57 1.60 5.86 2.50 13.17 6.50 6.17 5.88
NaH 2.09 1.89 1.75 2.04 9.48 6.83

KH 3.19 2.24 0.77 1.89 7.46 9.76

RbH 3.51 2.37 0.22 1.70 6.76 10.92

FH 1.00 0.92 6.69 5.90 21.12 16.06 1.87 1.83
CIH 1.38 1.27 3.61 4.50 15.26 12.72 1.73 1.08
BrH 1.47 1.41 6.79 3.80 12.98 11.68 1.46 0.82
IH 1.63 1.61 4.72 3.09 10.71 10.41 0.67 0.44

For experimental bond lengths and experimental dissociation energies see Refs. [33, 35, 36, 37]
and [38].

Experimental ionisation potentials: for LiH see Ref. [39] and for hydracids see Refs. [34] and [40].
Experimental dipole moments see Refs.: [33, 37, 38, 39, 41] and [42].

B

Force const. Dissociation Dipole
Bond lengths (mdyn/A) energies (V) moments (D) Cy
AB CNDO Exp. CNDO  Exp. CNDO  Exp. CNDO  Exp. CNDO

cOo 122 113 42.09 19.02 2196 11.09 0.56 1.37 +0.09
§i0 1.79 1.51 14.23 9.24 20.05 8.02 0.08 3.10 +0.02

GeO 1.95 1.65 7.78 4.52 6.81 3.28 +0.35
SnO  2.25 1.84 0.66 1.46 5.72 3.83 4.32 +0.36
PbO 2.36 1.92 5.74 -2.13 4.08 4.64 +0.34
CS 154 1.53 17.25 8.49 20.29 7.18 0.64 1.96 —0.06
CSe 1.71 1.66 17.50 18.80 4.99 -0.08
SiS  1.97 1.93 9.71 15.30 6.42 0.28 1.73 +0.13

C,4 atomic charge of atom A.
Experimental dipole moments: see Ref. [44].
Other experimental data: the same references which for Table 2A.
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3.1. Diatomic molecules

Table 1 presents the CNDO/2-U results obtained for all the homonuclear
diatomic molecules of the ‘s —p block” of the periodic table. Under consideration
of this table, generally, the theoretical results, obtained with our method, repro-
duce quite well the experimental variation, according to Z, of the three physico-
chemical properties k, I and Ry. Atomisation energies E4 are overestimated
but the CNDO/2 results are also overestimated for this property.

The Table 2 presents the results obtained for some heteronuclear diatomic
molecules and led us to make the following remarks, if one of the molecule’s
atoms goes through a column of the periodic table, in the direction of increasing
Z, bond lengths increase while force constants, atomisation energies and ioniz-
ation potentials decrease. Let us notice that dipole moments are reproduced
quite well, CNDO/2-U is able to give as CNDO/2 reasonable atomic charges.

3.2. Small Polyatomic Molecules

The AX; linear molecules results are presented in Table 3 and the AX; and
AX, centrosymmetrical molecules in Table 4. The measured bond lengths
progress in the way of the increasing atomic numbers when the X atom goes
through a class of the periodic table. This variation is well reproduced by means
of CNDO/2-U.

Table 5 presents the results obtained for AX, angular molecules and AX;
pyramidal molecules. For this species of molecules, the energy depends on two
independent structural parameters: the bond length AX and the angle XAX.

Table 3. AX, linear molecules by means of CNDO/2-U

Bond lengths AX (A) Atomisation energies (eV) Cx
AX, CNDO Exp. CNDO Exp. CNDO
BeF, 1.66 1.43 10.80 13.16 —0.351
BeCl, 1.70 1.77 30.10 9.66 -0.028
BeBr; 1.91 1.90 32.70 8.26 +0.089
Bel, 2.02 2.12 28.20 6.60 +0.183
MgF, 1.44 1.77 0.50 11.22 -0.532
MgCl, 2.40 2.18 15.10 8.86 —-0.295
MgBr, 2.46 2.34 18.60 7.52 -0.139
Mgl 2.56 16.60 0.000
CaF, 4.02 2.02 4.90 11.63 —-0.664
SrF, 4.38 2.10 5.10 11.40 -0.697
BaF, 5.40 2.17 5.80 11.83 —0.705
ZnBr, 2.44 2.24 19.00 +0.047
CdBr, 2.70 15.00 -0.115
HgBr, 3.24 2.41 9.20 -0.229

Cx: atomic charge of X.
Experimental data see Refs. [35, 37, 38] and [43].
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Table 4. AX; and AX, centrosymmetric molecules

A
Bond lengths AX (A) Atomisation energies (eV) Cx

AX; CNDO Exp. CNDO Exp. CNDO
BH,3 1.18 1.14 29.60 11.56 —0.068
BF; 1.44 1.29 29.30 20.03 —0.242
BCl; 1.72 1.74 45.70 14.17 —0.085
BBr3 1.90 1.87 43.60 11.70 -0.029
BI, 2.04 2.03 35.10 8.41 +0.031
AlCl; 2.26 2.06 26.60 13.22 —0.242
GaCl, 2.34 2.09 26.00 11.29 —0.181
InCl; 2.58 2.46 20.20 9.59 -0.315

Experimental data see Refs. [27] and [43].
Cx: atomic charge of atom X,

B
Bond lengths AX (A) Atomisation energies (eV) Cx
AX, CNDO Exp. CNDO Exp. CNDO
CH, 1.12 1.09 37.70 17.24 +0.011
SiHy4 1.54 1.48 25.50 13.42 -0.109
GeH, 1.62 1.53 25.00 11.99 -0.061
SnHy 1.84 1.70 18.70 10.48 —0.165
SiF, 1.94 1.54 11.60 23.41 —0.343
SiCl, 2.20 2.02 36.30 15.78 -0.219
SiBry 2.32 2.15 37.50 12.83 —0.155
© Sil, 2.50 2.43 30.40 9.71 —0.068
CCly 1.72 1.76 49.10 13.56 -0.089
SiCly 2.16 2.02 36.50 15.78 -0.224
GeCly 2.30 2.08 34.80 14.04 -0.211
SnCl, 2.48 2.30 27.70 13.18 —0.292
PbCl, 2.82 2.43 20.30 10.33 —0.365

Experimental data see Refs. [35. 37. 38] and [43].
Cx: see Table 4A.

We notice that the angle of valence HAH is clearly reduced when we go from
atom A of the second period to the atom A of the third, fourth and fifth periods.
This “closing” of the angle of valence, constitutes the most notable fact related
to the geometries of the molecules AH, . Therefore we are satisfied to notice
that this fact is well reproduced by the results of CNDO/2-U,

3.3. Transition Metal Complexes

For a transitional element T of the type T((n — 1)d —ns —nd), the AOs np are
empty, we have examined [25] the importance of their inclusion in the base
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LCAO. This study led us to conclude that a reduced base ((n —1)d —ns) for a
transitional element provides better results.

Clack et al. used Burns’ exponents. A comparative study of Slater’s and Burns’
exponents led us to select Burns’ ones. Thus, for a study of fundamental state
of the complexes, by means of CNDO/2-U, we have used Burns’ base, including
only the AOs (n —1)d —ns from the transitional elements.

On Table 6 we have mentioned the results obtained for some complexes. We
have applied CNDO/2-U for two conformations of FeCl;™. This complex is
tetrahedral (T, group), but we have also examined a hypothetical square planar
conformation (D, group). The results obtained for the two conformations by
using the experimental length of the bond Fe-Cl indicate for the tetrahedral
shape a larger stability than the one for the planar shape. Qualitatively the result
remains the same one if we optimise the length of the bond Fe~Cl for the two
conformations of FeCl, . This result seems interesting; it shows that CNDQ/2-U
method, used carefully can be fruitful for some questions relating to the relative
stabilities of the transition metals complexes even if the atomization’s energies,
as in CNDQ/2 method, are over estimated.

4. Conclusions

Our CNDO/2-U procedure has been applied to a set of molecules pertaining
to various classes. This set includes 52 diatomic molecules, 42 small polyatomic
molecules and 10 transition metal complexes. In each case the energy has been
fully minimised with respect to molecular geometry. CNDO/2-U method is
successful in predicting equilibrium bond lengths, bond angles and dipole
moments but stretching force constants, binding energies and ionization poten-
tials are too high. As a result of our calculations, it appears that CNDO/2-U
possesses both the merits and the failures of Pople-Santry-Segal CNDO/2
method. Last we can say that CNDO/2-U method reproduces quite well, the
periodicity of the various kinds of physicochemical properties.
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